Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Transl Vis Sci Technol ; 13(3): 8, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470318

RESUMO

Purpose: The aim of this study was to develop and validate a test to assess visual function in pigs using the visual psychophysics contrast sensitivity function. Methods: We utilized a touchscreen along with a pellet reward dispenser to train three Göttingen pigs on a visual psychophysics test and determined their contrast sensitivity function. Images with different contrast resolutions were used as visual stimuli and presented against a control image in a two-choice test. Following animals' acclimatization and the first phase of training, the system was arranged such that animals could self-run multiple consecutive trials without human intervention. Results: All animals were trained within a week and remembered the task with 1 day of reinforcement when tested 1 month after the last visual assessment. All trained animals performed well during the trial with minimal screen side bias, especially at contrast threshold above 40%. Conclusions: Göttingen pigs are trainable for a visual psychophysics test and able to self-run the trial without human intervention. Translational Relevance: Contrast sensitivity is one of the key parameters to assess visual function in humans. The possibility of measuring the same parameters in a large animal model allows for a better translation and understanding of drug safety and efficacy in preclinical ophthalmology.


Assuntos
Oftalmologia , Humanos , Animais , Suínos , Modelos Animais , Psicofísica
2.
STAR Protoc ; 5(1): 102827, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219151

RESUMO

Here, we present a protocol to differentiate induced pluripotent stem cell (iPSC) into adherent hematopoietic progenitors that release floating CD14+ CD45+ monocytes into the culture medium. We describe steps for iPSC expansion, embryoid body (EB) formation, suspension culture, plating EBs, and recurring harvests of monocytes, a.k.a. "monocyte factory." We then describe detailed procedures for freezing/thawing of monocytes and differentiation into polarized M1 and M2 macrophages. This protocol provides foundation to study iPSC monocytes and their progenies such as macrophages, microglial, and dendritic cells. For complete details on the use and execution of this protocol, please refer to Karlson et al.1 and Panicker et al.2.


Assuntos
Células-Tronco Pluripotentes Induzidas , Monócitos , Humanos , Macrófagos , Diferenciação Celular , Corpos Embrioides
3.
Artigo em Inglês | MEDLINE | ID: mdl-37487631

RESUMO

Cell-replacement therapies are a new class of treatments, which include induced pluripotent stem cell (iPSC)-derived tissues that aim to replace degenerated cells. iPSCs can potentially be used to generate any cell type of the body, making them a powerful tool for treating degenerative diseases. Cell replacement for retinal degenerative diseases is at the forefront of cell therapies, given the accessibility of the eye for surgical procedures and a huge unmet medical need for retinal degenerative diseases with no current treatment options. Clinical trials are ongoing in different parts of the world using stem cell-derived retinal pigment epithelium (RPE). This review focuses on scientific and regulatory considerations when developing an iPSC-derived RPE cell therapy from the development of a robust and efficient differentiation protocol to critical quality control assays for cell validation, the choice of an appropriate animal model for preclinical testing, and the regulatory aspects that dictate the final approval for proceeding to a first-in-human clinical trial.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Epitélio Pigmentado da Retina/metabolismo , Diferenciação Celular , Modelos Animais
4.
PLoS Biol ; 21(12): e3002402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048369

RESUMO

Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.


Assuntos
Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/genética , Cílios/metabolismo , Modelos Animais de Doenças , Epitélio , Camundongos Knockout , Retina , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo
5.
Am J Physiol Cell Physiol ; 325(6): C1470-C1484, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899750

RESUMO

Epithelial tissues form selective barriers to ions, nutrients, waste products, and infectious agents throughout the body. Damage to these barriers is associated with conditions such as celiac disease, cystic fibrosis, diabetes, and age-related macular degeneration. Conventional electrophysiology measurements like transepithelial resistance can quantify epithelial tissue maturity and barrier integrity but are limited in differentiating between apical, basolateral, and paracellular transport pathways. To overcome this limitation, a combination of mathematical modeling, stem cell biology, and cell physiology led to the development of 3 P-EIS, a novel mathematical model and measurement technique. 3 P-EIS employs an intracellular pipette and extracellular electrochemical impedance spectroscopy to accurately measure membrane-specific properties of epithelia, without the constraints of prior models. 3 P-EIS was validated using electronic circuit models of epithelia with known resistances and capacitances, confirming a median error of 19% (interquartile range: 14%-26%) for paracellular and transcellular resistances and capacitances (n = 5). Patient stem cell-derived retinal pigment epithelium tissues were measured using 3 P-EIS, successfully isolating the cellular responses to adenosine triphosphate. 3 P-EIS enhances quality control in epithelial cell therapies and has extensive applicability in drug testing and disease modeling, marking a significant advance in epithelial physiology.NEW & NOTEWORTHY This interdisciplinary paper integrates mathematics, biology, and physiology to measure epithelial tissue's apical, basolateral, and paracellular transport pathways. A key advancement is the inclusion of intracellular voltage recordings using a sharp pipette, enabling precise quantification of relative impedance changes between apical and basolateral membranes. This enhanced electrochemical impedance spectroscopy technique offers insights into epithelial transport dynamics, advancing disease understanding, drug interactions, and cell therapies. Its broad applicability contributes significantly to epithelial physiology research.


Assuntos
Células Epiteliais , Epitélio Pigmentado da Retina , Humanos , Epitélio/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Membrana Celular/metabolismo , Modelos Teóricos
6.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609254

RESUMO

Age-related macular degeneration (AMD), the leading cause of geriatric blindness, is a multi-factorial disease with retinal-pigmented epithelial (RPE) cell dysfunction as a central pathogenic driver. With RPE degeneration, lysosomal function is a core process that is disrupted. Transcription factors EB/E3 (TFEB/E3) tightly control lysosomal function; their disruption can cause aging disorders, such as AMD. Here, we show that induced pluripotent stem cells (iPSC)-derived RPE cells with the complement factor H variant [ CFH (Y402H)] have increased AKT2, which impairs TFEB/TFE3 nuclear translocation and lysosomal function. Increased AKT2 can inhibit PGC1α, which downregulates SIRT5, an AKT2 binding partner. SIRT5 and AKT2 co-regulate each other, thereby modulating TFEB-dependent lysosomal function in the RPE. Failure of the AKT2/SIRT5/TFEB pathway in the RPE induced abnormalities in the autophagy-lysosome cellular axis by upregulating secretory autophagy, thereby releasing a plethora of factors that likely contribute to drusen formation, a hallmark of AMD. Finally, overexpressing AKT2 in RPE cells in mice led to an AMD-like phenotype. Thus, targeting the AKT2/SIRT5/TFEB pathway could be a potential therapy for atrophic AMD.

7.
J Vis Exp ; (197)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37578220

RESUMO

The retinal pigment epithelium (RPE) is a monolayer of hexagonal cells located at the back of the eye. It provides nourishment and support to photoreceptors and choroidal capillaries, performs phagocytosis of photoreceptor outer segments (POS), and secretes cytokines in a polarized manner for maintaining the homeostasis of the outer retina. Dysfunctional RPE, caused by mutations, aging, and environmental factors, results in the degeneration of other retinal layers and causes vision loss. A hallmark phenotypic feature of degenerating RPE is intra and sub-cellular lipid-rich deposits. These deposits are a common phenotype across different retinal degenerative diseases. To reproduce the lipid deposit phenotype of monogenic retinal degenerations in vitro, induced pluripotent stem cell-derived RPE (iRPE) was generated from patients' fibroblasts. Cell lines generated from patients with Stargardt and Late-onset retinal degeneration (L-ORD) disease were fed with POS for 7 days to replicate RPE physiological function, which caused POS phagocytosis-induced pathology in these diseases. To generate a model for age-related macular degeneration (AMD), a polygenic disease associated with alternate complement activation, iRPE was challenged with alternate complement anaphylatoxins. The intra and sub-cellular lipid deposits were characterized using Nile Red, boron-dipyrromethene (BODIPY), and apolipoprotein E (APOE). To quantify the density of lipid deposits, a machine learning-based software, LipidUNet, was developed. The software was trained on maximum-intensity projection images of iRPE on culture surfaces. In the future, it will be trained to analyze three-dimensional (3D) images and quantify the volume of lipid droplets. The LipidUNet software will be a valuable resource for discovering drugs that decrease lipid accumulation in disease models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Humanos , Epitélio Pigmentado da Retina , Retina , Degeneração Retiniana/patologia , Lipídeos
8.
Stem Cells Transl Med ; 12(8): 536-552, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37459045

RESUMO

Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.


Assuntos
Degeneração Macular , Células-Tronco Pluripotentes , Humanos , Epitélio Pigmentado da Retina/metabolismo , Retina , Degeneração Macular/terapia , Degeneração Macular/metabolismo , Diferenciação Celular
9.
Pharmacol Ther ; 249: 108482, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385300

RESUMO

Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Retina/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Lipofuscina/genética , Lipofuscina/metabolismo , Atrofia/metabolismo , Atrofia/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
10.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288665

RESUMO

Over 30 million people worldwide suffer from untreatable vision loss and blindness associated with childhood-onset and age-related eye diseases caused by photoreceptor (PR), retinal pigment epithelium (RPE), and choriocapillaris (CC) degeneration. Recent work suggests that RPE-based cell therapy may slow down vision loss in late stages of age-related macular degeneration (AMD), a polygenic disease induced by RPE atrophy. However, accelerated development of effective cell therapies is hampered by the lack of large-animal models that allow testing safety and efficacy of clinical doses covering the human macula (20 mm2). We developed a versatile pig model to mimic different types and stages of retinal degeneration. Using an adjustable power micropulse laser, we generated varying degrees of RPE, PR, and CC damage and confirmed the damage by longitudinal analysis of clinically relevant outcomes, including analyses by adaptive optics and optical coherence tomography/angiography, along with automated image analysis. By imparting a tunable yet targeted damage to the porcine CC and visual streak - with a structure similar to the human macula - this model is optimal for testing cell and gene therapies for outer retinal diseases including AMD, retinitis pigmentosa, Stargardt, and choroideremia. The amenability of this model to clinically relevant imaging outcomes will facilitate faster translation to patients.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Animais , Suínos , Criança , Retina/diagnóstico por imagem , Degeneração Retiniana/etiologia , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina , Degeneração Macular/terapia
11.
STAR Protoc ; 4(2): 102292, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149860

RESUMO

Here, we present a protocol for differentiating human-induced pluripotent stem cells into three distinct mesodermal cell types: vascular endothelial cells (ECs), pericytes, and fibroblasts. We describe steps for using monolayer serum-free differentiation and isolating ECs (CD31+) and mesenchymal pre-pericytes (CD31-) from a single differentiation set. We then differentiate pericytes into fibroblasts using a commercial fibroblast culture medium. The three cell types differentiated in this protocol are useful for vasculogenesis, drug testing, and tissue engineering applications. For complete details on the use and execution of this protocol, please refer to Orlova et al. (2014).1.

12.
Stem Cell Res Ther ; 14(1): 53, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978104

RESUMO

National Eye Institute recently issued a new Strategic Plan outlining priority research areas for the next 5 years. Starting cell source for deriving stem cell lines is as an area with gaps and opportunities for making progress in regenerative medicine, a key area of emphasis within the NEI Strategic Plan. There is a critical need to understand how starting cell source affects the cell therapy product and what specific manufacturing capabilities and quality control standards are required for autologous vs allogeneic stem cell sources. With the goal of addressing some of these questions, in discussion with the community-at-large, NEI hosted a Town Hall at the Association for Research in Vision and Ophthalmology annual meeting in May 2022. This session leveraged recent clinical advances in autologous and allogeneic RPE replacement strategies to develop guidance for upcoming cell therapies for photoreceptors, retinal ganglion cells, and other ocular cell types. Our focus on stem cell-based therapies for RPE underscores the relatively advanced stage of RPE cell therapies to patients with several ongoing clinical trials. Thus, this workshop encouraged lessons learned from the RPE field to help accelerate progress in developing stem cell-based therapies in other ocular tissues. This report provides a synthesis of the key points discussed at the Town Hall and highlights needs and opportunities in ocular regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Doenças Retinianas , Humanos , Doenças Retinianas/terapia , Doenças Retinianas/metabolismo , Transplante de Células-Tronco , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
13.
Biomedicines ; 11(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830851

RESUMO

The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells.

14.
Nat Methods ; 20(1): 149-161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36550275

RESUMO

Age-related macular degeneration (AMD), a leading cause of blindness, initiates in the outer-blood-retina-barrier (oBRB) formed by the retinal pigment epithelium (RPE), Bruch's membrane, and choriocapillaris. The mechanisms of AMD initiation and progression remain poorly understood owing to the lack of physiologically relevant human oBRB models. To this end, we engineered a native-like three-dimensional (3D) oBRB tissue (3D-oBRB) by bioprinting endothelial cells, pericytes, and fibroblasts on the basal side of a biodegradable scaffold and establishing an RPE monolayer on top. In this 3D-oBRB model, a fully-polarized RPE monolayer provides barrier resistance, induces choriocapillaris fenestration, and supports the formation of Bruch's-membrane-like structure by inducing changes in gene expression in cells of the choroid. Complement activation in the 3D-oBRB triggers dry AMD phenotypes (including subRPE lipid-rich deposits called drusen and choriocapillaris degeneration), and HIF-α stabilization or STAT3 overactivation induce choriocapillaris neovascularization and type-I wet AMD phenotype. The 3D-oBRB provides a physiologically relevant model to studying RPE-choriocapillaris interactions under healthy and diseased conditions.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Células Endoteliais , Corioide/metabolismo , Retina/metabolismo , Degeneração Macular/metabolismo
15.
Invest Ophthalmol Vis Sci ; 63(12): 5, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326727

RESUMO

Purpose: Uveal coloboma is a congenital eye malformation caused by failure of the optic fissure to close in early human development. Despite significant progress in identifying genes whose regulation is important for executing this closure, mutations are detected in a minority of cases using known gene panels, implying additional genetic complexity. We have previously shown knockdown of znf503 (the ortholog of mouse Zfp503) in zebrafish causes coloboma. Here we characterize Zfp503 knockout (KO) mice and evaluate transcriptomic profiling of mutant versus wild-type (WT) retinal pigment epithelium (RPE)/choroid. Methods: Zfp503 KO mice were generated by gene targeting using homologous recombination. Embryos were characterized grossly and histologically. Patterns and level of developmentally relevant proteins/genes were examined with immunostaining/in situ hybridization. The transcriptomic profile of E11.5 KO RPE/choroid was compared to that of WT. Results: Zfp503 is dynamically expressed in developing mouse eyes, and loss of its expression results in uveal coloboma. KO embryos exhibit altered mRNA levels and expression patterns of several key transcription factors involved in eye development, including Otx2, Mitf, Pax6, Pax2, Vax1, and Vax2, resulting in a failure to maintain the presumptive RPE, as evidenced by reduced melanin pigmentation and its differentiation into a neural retina-like lineage. Comparison of RNA sequencing data from WT and KO E11.5 embryos demonstrated reduced expression of melanin-related genes and significant overlap with genes known to be dynamically regulated at the optic fissure. Conclusions: These results demonstrate a critical role of Zfp503 in maintaining RPE fate and optic fissure closure.


Assuntos
Coloboma , Neuropeptídeos , Animais , Humanos , Camundongos , Coloboma/genética , Coloboma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Peixe-Zebra/genética
16.
J Vis Exp ; (188)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36373944

RESUMO

The retinal pigment epithelium (RPE) and retina are functionally and structurally connected tissues that work together to regulate light perception and vision. Proteins on the RPE apical surface are tightly associated with proteins on the photoreceptor outer segment surface, making it difficult to consistently separate the RPE from the photoreceptors/retina. We developed a method to efficiently separate the retina from the RPE of human eyes to generate complete RPE/choroid and retina flatmounts for separate cellular analysis of the photoreceptors and RPE cells. An intravitreal injection of a high-osmolarity solution of D-mannitol, a sugar not transported by the RPE, induced the separation of the RPE and retina across the entire posterior chamber without causing damage to the RPE cell junctions. No RPE patches were observed attached to the retina. Phalloidin labeling of actin showed RPE shape preservation and allowed morphometric analysis of the entire epithelium. An artificial intelligence (AI)-based software was developed to accurately recognize and segment the RPE cell borders and quantify 30 different shape metrics. This dissection method is highly reproducible and can be easily extended to other animal models.


Assuntos
Inteligência Artificial , Epitélio Pigmentado da Retina , Animais , Humanos , Epitélio Pigmentado da Retina/patologia , Corioide/metabolismo , Retina , Células Fotorreceptoras , Proteínas/metabolismo
17.
Stem Cell Reports ; 17(11): 2438-2450, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36306781

RESUMO

Stargardt retinopathy is an inherited form of macular degeneration caused by mutations in gene ABCA4 and characterized by the accumulation of lipid-rich deposits in the retinal pigment epithelium (RPE), RPE atrophy, and photoreceptor cell death. Inadequate mechanistic insights into pathophysiological changes occurring in Stargardt RPE have hindered disease treatments. Here, we show that ABCA4 knockout and induced pluripotent stem cell-derived RPE (STGD1-iRPE) from patients with Stargardt differentiate normally but display intracellular lipid and ceramide deposits reminiscent of the disease phenotype. STGD1-iRPE also shows defective photoreceptor outer segment (POS) processing and reduced cathepsin B activity-indicating higher lysosomal pH. Lipid deposits in STGD1-iRPE are lowered by increasing the activity of ABCA1, a lipid transporter, and ABCA4 ortholog. Our work suggests that ABCA4 is involved in POS and lipid handling in RPE cells and provides guidance for ongoing gene therapy approaches to target both RPE and photoreceptor cells for an effective treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Stargardt , Lipídeos
19.
STAR Protoc ; 3(3): 101582, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880133

RESUMO

RPE tissues are derived from induced pluripotent stem cells (iPSCs) to model retinal diseases and as a replacement therapy for macular degeneration. Here, we developed a robust and efficient directed differentiation protocol to generate pure RPE cells that form a polarized monolayer. This protocol describes how to set up RPE differentiation and to obtain a pure population that expresses mature RPE markers and forms strong tight junctions. For complete details on the use and execution of this protocol, please refer to Sharma et al., 2019, Sharma et al., 2021 and Miyagishima et al. (2021).


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Biomarcadores , Diferenciação Celular , Humanos , Degeneração Macular/terapia , Epitélio Pigmentado da Retina
20.
Stem Cell Reports ; 17(8): 1824-1841, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905738

RESUMO

Regenerative therapies aimed at replacing photoreceptors are a promising approach for the treatment of otherwise incurable causes of blindness. However, such therapies still face significant hurdles, including the need to improve subretinal delivery and long-term survival rate of transplanted cells, and promote sufficient integration into the host retina. Here, we successfully delivered in vitro-derived human photoreceptor precursor cells (PRPCs; also known as immature photoreceptors) to the subretinal space of seven normal and three rcd1/PDE6B mutant dogs with advanced inherited retinal degeneration. Notably, while these xenografts were rejected in dogs that were not immunosuppressed, transplants in most dogs receiving systemic immunosuppression survived up to 3-5 months postinjection. Moreover, differentiation of donor PRPCs into photoreceptors with synaptic pedicle-like structures that established contact with second-order neurons was enhanced in rcd1/PDE6B mutant dogs. Together, our findings set the stage for evaluating functional vision restoration following photoreceptor replacement in canine models of inherited retinal degeneration.


Assuntos
Degeneração Retiniana , Animais , Diferenciação Celular , Cães , Humanos , Terapia de Imunossupressão , Células Fotorreceptoras/transplante , Células Fotorreceptoras de Vertebrados , Retina , Degeneração Retiniana/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...